that those residues which tend to form more stable helical sequences also tend to nucleate the formation of these regions better.

IV. Conclusions

Water-soluble random copolymers containing L-phenylalanine and N^5 -(3-hydroxypropyl)-L-glutamine were synthesized and characterized. From an analysis of the thermally induced helix-coil transitions of these copolymers, the Zimm-Bragg parameters σ and s for poly(L-phenylalanine) were deduced. The values for s show that L-phenyl-

alanine is a moderately strong helix former, stronger than L-alanine, but weaker than L-leucine. These results are in good agreement with the earlier qualitative results of other workers. The greater stability of the α -helical form of poly(L-phenylalanine) compared to poly(L-alanine) and of poly(L-leucine) compared to both poly(L-phenylalanine) and poly(L-alanine) has been attributed to hydrophobic interactions.

Acknowledgment. We are indebted to Mr. H. Chan and Mr. G. Davenport for technical assistance and to Dr. J. Rosamond for help with the gas chromatography.

Ring Closure in Chain Molecules with C_n , I, or S_{2n} Symmetry¹

Nobuhiro Go2 and Harold A. Scheraga*

Department of Chemistry, Cornell University, Ithaca, New York 14850. Received November 8, 1972

ABSTRACT: Mathematical methods are developed for the exact generation of conformations of cyclic chain molecules with C_n . I_n or S_{2n} symmetry, when bond lengths and bond angles are maintained fixed. The methods are illustrated for the case of cyclohexane. An explicit expression is given for the dihedral angles of the flexible boat form of cyclohexane. Application of these methods to conformational energy calculations of cyclic oligopeptides is discussed.

There is considerable interest in the conformations of cyclic oligopeptides, which may or may not have symmetry. In order to study their conformations, it is necessary to generate ring structures of such molecules. The problem of the exact ring closure of a chain molecule with fixed bond lengths and bond angles has already been solved without assuming any symmetry,3-5 and differs from that in which symmetry is assumed. This paper is concerned with solving the mathematical problem of finding a set of dihedral angles in a cyclic chain molecule whose conformation has C_n , I, or S_{2n} symmetry. Although the methods have been developed with applications to cyclic oligopeptides in mind, they are applicable to any cyclic chain molecule with symmetry. Therefore, the methods are illustrated for the simple case of cyclohexane. The origin of the rigidity and flexibility of the chair and boat forms, respectively, of cyclohexane is discussed from both the point of view of the theory developed earlier³ and that presented here.

I. Nature of Symmetry in Cycle Structures

In general, a chain molecule can be regarded as a series of units linked by single bonds about which rotation can take place (see Figure 1). The ith bond (with dihedral angle for rotation around it being denoted as ω_i) between atom B_{i-1} in the (i-1)th unit and atom A_i in the *i*th unit links these two units. The ith structure, consisting of the ith unit and atoms B_{i-1} and A_{i+1} , is a rigid one; i.e., the

- (1) This work was supported by research grants from the National Institute of General Medical Sciences of the National Institutes of Health, U. S. Public Health Service (GM-14312, and from the National Science Foundation (GB-28469X1).
- (2) On leave of absence from the Department of Physics, Faculty of Science, University of Tokyo, Tokyo, Japan, Summer, 1971, and from the Department of Physics, Faculty of Science, Kyushu University, Fukuoka, Japan, Summer 1972.
- (3) N. Go and H. A. Scheraga, Macromolecules, 3, 178 (1970); this paper will be referred to hereinafter as A, with equation numbers cited as
- (4) The solution is a trivial one when bond lengths and bond angles are allowed to vary. The necessity (or the advantage) of treating bond lengths and bond angles as fixed was discussed earlier⁵ and reviewed briefly in paper A.
- (5) N. Gö and H. A. Scheraga, J. Chem. Phys., 51, 4751 (1969).

relative positions of the atoms in the structure do not change even when ω_i and ω_{i+1} do. Each unit may consist either of a single atom or of two or more atoms. In the case of a polyethylene-type molecule, atoms A_i and B_i are a single identical atom. When atoms B_{i-1} , A_i , B_i , A_{i+1} lie in a single plane, the structure is said to have a planar backbone (as in the polypeptide chain); this definition of a planar backbone includes the trivial case in which atoms A_i and B_i are a single identical atom. It also includes an important special case where the ith structure has a plane of symmetry in which atoms B_{i-1} , A_i , B_i , A_{i+1} (and any other atoms that define the backbone of the chain) lie.

For symmetry to exist in a molecule, there must, first of all, be symmetry in the covalent structure. In a molecule with C_n symmetry, rotation about the symmetry axis by $2\pi/n$ leads to the same structure, and the following relation holds among its dihedral angles

$$\omega_{i+km} = \omega_i \quad (i = 1, 2, ..., m; k = 1, 2, ..., n - 1)$$
 (1)

where n is the number characterizing the symmetry, and m is the number of dihedral angles in a symmetry unit [a succession of units (in the sense defined above) whose conformation (or its mirror image) repeats in a manner specified by the symmetry]. In the case of I symmetry, inversion through a point leads to the same structure, and the following relation holds

$$\omega_{i+m} = -\omega_i \quad (i = 1, 2, ..., m)$$
 (2)

In the case of S_{2n} symmetry, rotation about the symmetry axis by $\pi \pm \pi/n$, and then inversion through a point on the symmetry axis, leads to the same structure, and the following relation holds

$$\omega_{i+2km} = \omega_i$$
 (i = 1, 2, ..., m; k = 1, 2, ..., n - 1) (3)

$$\omega_{i+(2k+1)m} = -\omega_i$$

$$(i = 1, 2, ..., m; k = 0, 1, 2, ..., n - 1)$$

The case of n = 1, i.e., S_2 symmetry, is identical with that of I symmetry.

Equations 2 and 3 will be derived rigorously in section III, but they are presented here for the purpose of specifying the kinds of symmetry to be treated in this paper.

II. Cyclic Chain Molecules with C_n Symmetry

If F_i is an *i*th *unit*, consisting of rigidly arranged atoms such as A_i and B_i as defined in Figure 1, a molecule whose chemical structure is

$$(F,F,\cdots F_m)_n$$

can assume conformations with C_n symmetry. In order to develop practical methods to obtain sets of dihedral angles which generate conformations with C_n symmetry, we proceed as follows.

Consider a right-handed local cartesian coordinate system for each *structure*. The *i*th coordinate system is defined in such a way that the origin is at atom B_{i-1} and the x axis is along the vector pointing from atom B_{i-1} to atom A_i . The y axis is defined by selecting a suitable atom in the *i*th structure. To remain general in this section, we need not specify how the y axis is defined. (For a

Oth coordinate system can be made to overlap the mth one by a rotation of $2\pi/n$ around the symmetry axis. In order to achieve this overlap, U and \mathbf{p} must be related in a specific manner which we now demonstrate. Consider two more coordinate systems (the 0'th and m'th) having the same orientations as the 0th and mth ones, respectively, but having both their origins at the same point on the symmetry axis. If $\mathbf{r}_{0'}$ and $\mathbf{r}_{m'}$ are the position vectors of a given point in space with respect to the 0'th and m'th coordinate systems, then

$$\mathbf{r}_{0'} = \mathbf{r}_0 + \mathbf{q} \tag{9}$$

$$\mathbf{r}_{m'} = \mathbf{r}_m + \mathbf{q} \tag{10}$$

and

$$\mathbf{r}_{0'} = \mathbf{U}[\mathbf{u}, \pm (2\pi/n)]\mathbf{r}_{m'} \tag{11}$$

where \mathbf{q} is the position vector of the origin of the 0th (or mth, respectively) coordinate system with respect to the 0'th (or m'th, respectively) one, and \mathbf{u} is a unit vector (with direction cosines u_x , u_y , u_z in the 0th coordinate system) lying along the symmetry axis. The matrix $\mathbf{U}(\mathbf{u},\phi)$ in eq 11, where $\phi = \pm 2\pi/n$, is given by equation 12

$$\mathbf{U}(\mathbf{u},\phi) = \begin{bmatrix} u_{x}^{2}(1-\cos\phi) + \cos\phi & u_{x}u_{y}(1-\cos\phi) - u_{z}\sin\phi & u_{x}u_{z}(1-\cos\phi) + u_{y}\sin\phi \\ u_{y}u_{x}(1-\cos\phi) + u_{z}\sin\phi & u_{y}^{2}(1-\cos\phi) + \cos\phi & u_{y}u_{z}(1-\cos\phi) - u_{x}\sin\phi \\ u_{z}u_{x}(1-\cos\phi) - u_{y}\sin\phi & u_{z}u_{y}(1-\cos\phi) + u_{x}\sin\phi & u_{z}^{2}(1-\cos\phi) + \cos\phi \end{bmatrix}$$
(12)

structure with a planar backbone, it is natural to define the y axis in such a way that the x,y plane coincides with the plane of the backbone, and this is actually done in section III.) If a given point in space is expressed by position vectors \mathbf{r}_i and \mathbf{r}_{i-1} with respect to the ith and (i-1)th coordinate system, respectively, the relation between them is

$$\mathbf{r}_{i-1} = \mathbf{T}_{i-1} \mathbf{R}_i \mathbf{r}_i + \mathbf{p}_{i-1} \tag{4}$$

where \mathbf{T}_{i-1} is a 3 \times 3 orthogonal matrix for rotation to bring the *i*th coordinate system into the same orientation as that of the (i-1)th coordinate system when $\omega_i=0$, \mathbf{p}_{i-1} is the position vector of atom \mathbf{B}_{i-1} with respect to the (i-1)th coordinate system, and \mathbf{R}_i is a matrix for rotation about the x axis by ω_i and is given by

$$\mathbf{R}_{i} \equiv \mathbf{R}(\omega_{i}) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \omega_{i} & -\sin \omega_{i} \\ 0 & \sin \omega_{i} & \cos \omega_{i} \end{bmatrix}$$
 (5)

In this section the *mnth* local coordinate system will sometimes also be called the 0th one because of the cyclic nature of the molecule. The *mth* coordinate system may be transformed to the 0th system by repetitive use of eq 4 to give

$$\mathbf{r}_0 = \mathbf{U}_{\mathbf{r}_m} + \mathbf{p} \tag{6}$$

where

$$\mathbf{U} = \mathbf{T}_0 \mathbf{R}_1 \mathbf{T}_1 \mathbf{R}_2 \cdots \mathbf{T}_{m-1} \mathbf{R}_m \tag{7}$$

$$\mathbf{p} = \mathbf{p}_0 + \mathbf{T}_0 \mathbf{R}_1 \mathbf{p}_1 + \mathbf{T}_0 \mathbf{R}_1 \mathbf{T}_1 \mathbf{R}_2 \mathbf{p}_2 + \dots + \mathbf{T}_0 \mathbf{R}_1 \mathbf{T}_1 \mathbf{R}_2 \cdots \mathbf{T}_{m-2} \mathbf{R}_{m-1} \mathbf{p}_{m-1}$$
(8)

The matrix U brings the mth coordinate system into the same orientation as that of the 0th one, and the vector \mathbf{p} is the position vector of the origin of the mth coordinate system with respect to the 0th one.

When the molecule has C_n symmetry, the 0th and mth local coordinate systems are symmetry related; *i.e.*, the

and expresses a rotation by an angle ϕ about the unit vector \mathbf{u} ; *i.e.*, eq 11 indicates that the m'th coordinate system can be obtained by rotating the 0'th coordinate system about an axis (the symmetry axis of the molecule in this case) going through the common origin. From eq 9 to 11, we obtain

$$\mathbf{r}_0 = \mathbf{U}[\mathbf{u}, \pm (2\pi/n)]\mathbf{r}_m + \{\mathbf{U}[\mathbf{u}, (2\pi/n)] - \mathbf{I}\}_{\mathbf{q}}$$
 (13)

where \boldsymbol{I} is the unit matrix. By comparing eq 6 and 13, we see that

$$\mathbf{U} = \mathbf{U}[\mathbf{u}, \pm (2\pi/n)] \tag{14}$$

and

$$\mathbf{p} = \{\mathbf{U}[\mathbf{u}, \pm (2\pi/n)] - \mathbf{I}\}\mathbf{q}$$
 (15)

This means that U and \mathbf{p} , given for the general case by eq 7 and 8, must have the forms given by the right-hand sides of eq 14 and 15, respectively, in a molecule with C_n symmetry, with certain vectors \mathbf{u} and \mathbf{q} whose meaning is described above. The necessary conditions that U and \mathbf{p} must satisfy in order to generate a conformation with C_n symmetry can be derived by eliminating the vector \mathbf{u} from eq 14 and \mathbf{q} from eq 15. Taking the trace of both sides of eq 14, and using eq 12, we have

$$\text{Tr}\mathbf{U} = \sum_{i=1}^{3} u_{ii} = 1 + 2 \cos(2\pi/n)$$
 (16)

Also, from eq 15, we have

$$\mathbf{u} \cdot \mathbf{p} = 0 \tag{17}$$

which means that the vector **p** must be perpendicular to the symmetry axis.

It is shown below that these equations also represent sufficiency conditions; *i.e.*, if U and p, given by eq 7 and 8, respectively, satisfy eq 16 and 17, then it is possible to find vectors \mathbf{u} and \mathbf{q} and to determine them uniquely so

(6) H. Jeffreys and B. Jeffreys, "Methods of Mathematical Physics," Cambridge University Press, Cambridge, 1956, 3rd ed, p 122.

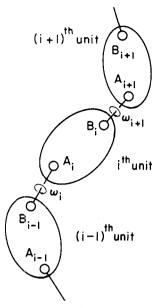


Figure 1. Definition of units

that U and p have the forms given by the right-hand sides of eq 14 and 15, respectively. The sufficiency conditions are demonstrated as follows. When the matrix U of eq 7 satisfies eq 16, the vector u can be determined automatically from the elements of U because U has the form of eq 12 with $\phi = \pm 2\pi/n$. Then, by equating eq 7 and 12 (which are functions of the ω 's), we obtain u_x , u_y , u_z . When the vector \mathbf{p} of eq 8 satisfies eq 17, with the vector u determined above, we can choose a vector q so that eq 15 is satisfied. In fact, q may be taken as $[a\mathbf{u} - (1/2)\mathbf{p} +$ $(1/2)(\mathbf{p} \times \mathbf{u})$ cot π/n , where a is an arbitrary number. (Actually, q is never used; it is given here simply to show that it can be chosen.) Therefore, eq 16 and 17 are the sought conditions that U and p must satisfy in order that they define a C_n symmetry operation.⁷

The conditions stated in eq 16 and 17, that U and p must satisfy, can also be regarded as the ones which determin• the dihedral angles $\omega_1, \ldots, \omega_m$ in a symmetry unit, because U and p are generated from these dihedral angles by eq 7 and 8, respectively. Thus, eq 16 and 17 reduce the number of independent variables from m to (m 2). Once the dihedral angles of a symmetry unit are determined, those of the remainder of the molecule are given by eq 1. Our next problem is to express two dependent dihedral angles in terms of (m-2) independent dihedral angles in a symmetry unit by solving eq 16 and 17. It is convenient to consider the case of molecules with C_2 symmetry⁸ separately from those with C_n $(n \ge 3)$ symmetry. In the case of C₂ symmetry, the first equation in footnote 7, which is equivalent to eq 16 and 17, can be solved analytically to give explicit formulas for two dependent di-

(7) It should be noted here that, for n = 2, a single vector equation

$$(\mathbf{I} + \mathbf{U})\mathbf{p} = 0$$

is equivalent to eq 16 and 17. This equation can be derived from eq 16 and 17 by substituting $\phi = \pi$ (the result of eq 16 for n=2) in eq 12, and then computing (I + U)p and substituting eq 17 into the result. On the other hand, if this equation holds, then

$$\det(\mathbf{I} + \mathbf{U}) = 0$$

since **p** is a nonvanishing vector. The solution of this equation is $\phi = \pi$ (eq 16) which [when substituted in (I + U)p] gives zero if $\mathbf{u} \cdot \mathbf{p} = 0$ (eq

(8) An example of such a molecule, with a twofold symmetry axis, is gramicidin S (with φ = π); G. M. Schmidt, D. C. Hodgkin, B. M. Oughton, Biochem. J., 65, 744 (1957).

hedral angles in terms of (m-2) independent ones. In the case of C_n ($n \ge 3$) symmetry, eq 16 and 17 can be reduced to a single algebraic equation in a single unknown, which can be solved easily by numerical methods. The case of C₂ symmetry will be treated first.

For the case of n = 2, we shall start with the equation in footnote 7 rather than with eq 16 and 17, and solve for the dependent variables ω_{m-1} and ω_m in terms of the independent variables $\omega_1, \ldots, \omega_{m-2}$. In order to emphasize that ω_{m-1} and ω_m are unknowns, we shall designate them as ξ and η , respectively, and denote \mathbf{R}_{m-1} and \mathbf{R}_m as \mathbf{X} and \mathbf{Y} , respectively. Also we shall express U and p of eq 7 and 8 as follows

$$U = AXBY \tag{18}$$

$$p = a + AXb \tag{19}$$

where

$$\mathbf{A} = \mathbf{T}_0 \mathbf{R}_1 \mathbf{T}_1 \mathbf{R}_2 \cdots \mathbf{T}_{m-3} \mathbf{R}_{m-2} \mathbf{T}_{m-2}$$
 (20)

$$\mathbf{B} = \mathbf{T}_{m-1} \tag{21}$$

$$\mathbf{a} = \mathbf{p}_0 + \mathbf{T}_0 \mathbf{R}_1 \mathbf{p}_1 + \dots + \mathbf{T}_0 \mathbf{R}_1 \mathbf{T}_1 \mathbf{R}_2 \cdots \mathbf{T}_{m-3} \mathbf{R}_{m-2} \mathbf{p}_{m-2}$$
 (22)

$$\mathbf{b} = \mathbf{p}_{m-1} \tag{23}$$

Then the first equation in footnote 7 takes the form

$$\mathbf{a} + \mathbf{A}\mathbf{X}\mathbf{b} + \mathbf{A}\mathbf{X}\mathbf{B}\mathbf{Y}\mathbf{a} + \mathbf{A}\mathbf{X}\mathbf{B}\mathbf{Y}\mathbf{A}\mathbf{X}\mathbf{b} = 0$$
 (24)

where B and b are constants and A and a are given quantities (i.e., completely determined by a given set of independent variables $\omega_1, \ldots, \omega_{m-2}$). Our problem is to solve eq 24 for the unknown ξ and η for given **A**, **B**, **a**, and **b**.

Equation 24 can be transformed to

$$\mathbf{Y}(\mathbf{a} + \mathbf{A}\mathbf{X}\mathbf{b}) = -\mathbf{B}^{-1}\mathbf{X}^{-1}\mathbf{c} - \mathbf{d}$$
 (25)

with

$$\mathbf{c} = \mathbf{A}^{-1}\mathbf{a} \tag{26}$$

and

$$\mathbf{d} = \mathbf{B}^{-1}\mathbf{b} \tag{27}$$

From the x component of eq 25, we have

$$\alpha \cos \xi + \beta \sin \xi + \gamma = 0 \tag{28}$$

with

$$\alpha = a_{12}b_2 + a_{13}b_3 + b_{21}c_2 + b_{31}c_3$$

$$\beta = -a_{12}b_3 + a_{13}b_2 + b_{21}c_3 - b_{31}c_2$$

$$\gamma = a_1 + d_1 + a_{11}b_1 + b_{11}c_1$$
(29)

where a_i , b_i , c_i , and d_i are the *i*th components of vectors \mathbf{a} , \mathbf{b} , \mathbf{c} , and \mathbf{d} , respectively, and a_{ij} and b_{ij} are the i,j elements of matrices A and B (and, therefore, the j,i elements of matrices A^{-1} and B^{-1} because both are orthogonal matrices), respectively. Equation 28 contains only one unknown, viz., ξ. The necessary and sufficient condition for the existence of solution(s) of eq 28 is given by

$$\alpha^2 + \beta^2 - \gamma^2 > 0 \tag{30}$$

When this is satisfied, eq 28 has the solution

$$\cos \xi = \frac{-\alpha \gamma \pm \beta (\alpha^2 + \beta^2 - \gamma^2)^{1/2}}{\alpha^2 + \beta^2}$$

$$\sin \xi = \frac{-\beta \gamma \mp \alpha (\alpha^2 + \beta^2 - \gamma^2)^{1/2}}{\alpha^2 + \beta^2}$$
(31)

from which ξ can be obtained. The \pm and \mp signs in eq 31 are interdependent in the sense that, if the upper (or lower, respectively) sign is taken in one equation, the upper (or lower, respectively) sign must be taken in the other equation. Therefore, there are two solutions of eq 31 except when the equality sign holds in eq 30; in this case, there is only one solution. Once ξ is known, η can be obtained by using the y and z components of eq 25. The result is

$$\cos \eta = \frac{e_2 f_2 + e_3 f_3}{e_2^2 + e_3^2}$$

$$\sin \eta = \frac{e_2 f_3 - e_3 f_2}{e_2^2 + e_3^2}$$
(32)

where e_i and f_i are the *i*th components of vectors **e** and **f**, respectively, defined by

$$\mathbf{e} = \mathbf{a} + \mathbf{A}\mathbf{X}\mathbf{b}$$

$$\mathbf{f} = -\mathbf{B}^{-1}\mathbf{X}^{-1}\mathbf{c} - \mathbf{d}$$
(33)

Equation 32 yields one solution η for each value of ξ .

Thus, to obtain ω_{m-1} and ω_m in terms of the (m-2) independent values of $\omega_1, \ldots, \omega_{m-2}$ for the case of C_2 symmetry, eq 31 and 32 must be solved for ξ and η , respectively.

We now consider molecules with C_n $(n \ge 3)$ symmetry, and make use of eq 16 and 17. By performing the indicated subtraction of the i,j elements of the matrix U in eq 12, we obtain

$$\begin{bmatrix} u_{23} - u_{32} \\ u_{31} - u_{13} \\ u_{12} - u_{21} \end{bmatrix} = -2 \sin \phi \mathbf{u}$$
 (34)

From eq 34, it can be seen that eq 17 is equivalent9 to

$$p_1(u_{23} - u_{32}) + p_2(u_{31} - u_{13}) + p_3(u_{12} - u_{21}) = 0$$
 (35)

Hence, we may regard eq 16 and 35 as the ones for obtaining the dependent variables ω_{m-1} and ω_m in terms of the independent variables $\omega_1, \ldots, \omega_{m-2}$. Keeping the expressions for U and **p** from eq 18 and 19, we introduce an additional matrix C defined by

$$C = AXB \tag{36}$$

so that U is now given by CY. The matrix C and the vector **p** are functions of the independent variables and of one unknown, $\xi \equiv \omega_{m-1}$. Equations 16 and 35 can now be written as

$$\alpha' \cos \eta + \beta' \sin \eta + \gamma' = 0 \tag{37}$$

and

$$\alpha^{\prime\prime}\cos\eta + \beta^{\prime\prime}\sin\eta + \gamma^{\prime\prime} = 0 \tag{38}$$

with

$$\alpha' = c_{22} + c_{33}$$

$$\beta' = c_{23} - c_{32}$$
(39)

$$\gamma' = c_{11} - 1 - 2 \cos(2\pi/n)$$

and

$$\alpha'' = p_1(c_{23} - c_{32}) - p_2c_{13} + p_3c_{12}$$

$$\beta'' = -p_1(c_{22} + c_{33}) + p_2c_{12} + p_3c_{13}$$

$$\gamma'' = p_2c_{31} - p_3c_{21}$$
(40)

where c_{ij} is the i,j element of matrix C. Solving eq 37 and 38 simultaneously, we have

$$\cos \eta = (\beta'\gamma'' - \gamma'\beta'')/(\alpha'\beta'' - \beta'\alpha'')$$

$$\sin \eta = (\gamma'\alpha'' - \alpha'\gamma'')/(\alpha'\beta'' - \beta'\alpha'')$$
(41)

By squaring and adding each of eq 41, we eliminate η and obtain

$$(\beta'\gamma'' - \gamma'\beta'')^2 + (\gamma'\alpha'' - \alpha'\gamma'')^2 - (\alpha'\beta'' - \beta'\alpha'')^2 = 0 \quad (42)$$

This can be regarded as an algebraic equation in a single unknown ξ , which can be solved numerically by Newton's method, for example. Once ξ is determined, then η is computed from eq 41, thereby providing a solution to the problem for C_n $(n \ge 3)$ symmetry.

In our earlier treatment³ of ring closure in a chain molecule, in which no symmetry was assumed, we concluded that only (m-6) of the m dihedral angles are independent, the remaining 6 dependent variables being determined by the condition of ring closure. In the present treatment of molecules with C_n symmetry, we concluded that (m-2) dihedral angles in a symmetry unit are independent, and only 2 are dependent. These two conclusions constitute an apparent paradox when applied to molecules having the structure

$$[F_1F_2F_3]_2$$

Since such a molecule has six variable dihedral angles in the ring, there are no degrees of freedom and hence there are no or a finite number of conformations possible according to our earlier treatment. According to the treatment in this paper, this molecule can assume conformations with C_2 symmetry which have one degree of freedom because there are three variable dihedral angles in the symmetry unit. The resolution of this apparent paradox will be given in section IV.

III. Cyclic Chain Molecules with I or S_{2n} Symmetry

We turn now to cyclic chain molecules whose chemical structure is

$$(F_1F_2\cdots F_mF_1*F_2*\cdots F_m*)_n$$

where F_{i}^{*} is a unit which is enantiomorphic to F_{i} ; *i.e.*, F_{i} and F_{i}^{*} are mirror images of each other (e.g., D- and L-amino acid residues). Such molecules can assume conformations with S_{2n} symmetry (as already indicated in section I, the case of n = 1, i.e., S_{2} symmetry, is conventionally designated as I symmetry).

An interesting special case arises for molecules in which $F_i = F_i^*$, *i.e.*, those (like glycine) in which the structure consisting of the unit F_i and atoms B_{i-1} and A_{i+1} has a planar backbone which is also a plane of symmetry. In such a case, the chemical structure of the molecule is

and it can assume conformations with S_{2n} as well as C_{2n} symmetry, as discussed in section II. While we will not

⁽⁹⁾ For n=2, eq 35 is not independent of eq 16 because $\sin \phi$ on the right-hand side of eq 34 vanishes for $\phi=\pi$. This is one of the reasons why the case of n=2 was treated separately from the others; in addition, it is possible to obtain an analytical solution for n=2, while only numerical solutions can be obtained for $n\geq 3$.

assume that $F_i = F_i^*$ in the general treatment in this section, this special case is sometimes treated separately.

As before, we consider a local cartesian coordinate system for each structure. However, whereas we made use of only a right-handed coordinate system in section II, here we use a right-handed system for structures including F_i (i.e., the structures consisting of unit F_i and atoms B_{i-1} and A_{i+1}) and both a right- and left-handed system for structures including Fi*. The left-handed coordinate system for structures including F_i^* is obtained by assigning to each atom the same numerical values for the cartesian coordinates that it has in the right-handed coordinate system for structures including Fi. The right-handed coordinate system for structures including Fi* is obtained by keeping the origin and the x and y axes the same as in the left-handed system but inverting the direction of the z axis. If a given point in space is expressed by position vectors \mathbf{r}_i and \mathbf{r}_i * with respect to the right- and left-handed coordinate system, respectively, associated with Fi*, they are related to each other by

$$\mathbf{r}_i = \mathbf{I}'\mathbf{r}_i * \tag{43}$$

.where

$$\mathbf{I'} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \tag{44}$$

The transformation of coordinates between the righthanded coordinate systems corresponding to F_{i-1} and F_i , and between the left-handed coordinate systems corresponding to F_{i-1}^* and F_{i}^* , is given by eq 4, as before. In particular, for the latter, eq 4 becomes

$$\mathbf{r}_{i-1}^* = \mathbf{T}_{i-1} \mathbf{R}(\omega_i) \mathbf{r}_i^* + \mathbf{p}_{i-1}$$
 (45)

From eq 43 and 45, and the relation $\mathbf{R}(\omega_i) = \mathbf{I}'\mathbf{R}(-\omega_i)\mathbf{I}'$, we have¹⁰

$$\mathbf{r}_{i-1} = \mathbf{I}'\mathbf{T}_{i-1}\mathbf{I}'\mathbf{R}(-\omega_i)\mathbf{r}_i + \mathbf{I}'\mathbf{p}_{i-1}$$
 (46)

Equation 46 implies two theorems: (1) if two structures are linked together by a single bond to give a conformation with a dihedral angle ω , the mirror image of this conformation has a dihedral angle $(-\omega)$; (2) if a cyclic chain molecule

has a conformation with S_{2n} symmetry (or I symmetry in the case of n = 1), and the values of any m consecutive

(10) This equation can be simplified for the special case in which each structure has a planar backbone, including the case in which F_{i} = Fi*, where it is convenient to define the y axis of the ith local coordinate system in such a way that atoms B_i and A_{i+1} , as well as atoms B_{i-1} and A_i lie in the x,y plane. Since p_{i-1} also lies in the x,y plane, its z component is zero (hence, $I'p_{i-1} = p_{i-1}$), and the matrix T_{i-1} has the

$$\mathbf{T}_{i-1} = \begin{bmatrix} \cos \theta_{i-1} & -\sin \theta_{i-1} & 0 \\ \sin \theta_{i-1} & \cos \theta_{i-1} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

where θ_{i-1} is the angle of rotation around the z axis [the same for the ith and (i-1)th systems when $\omega_i = 0$] to bring the *i*th coordinate system into the same orientation as that of the (i-1)th system when $\omega_i=0$. If \mathbf{T}_{i-1} is given by this expression, then $\mathbf{I}'\mathbf{T}_{i-1}\mathbf{I}'=\mathbf{T}_{i-1}$. Thus, for the special case of a planar backbone, eq 46 becomes

$$\mathbf{r}_{i-1} = \mathbf{T}_{i-1}\mathbf{R}(-\omega_i)\mathbf{r}_i + \mathbf{p}_{i-1}$$

dihedral angles along the chain are $\omega_1, \omega_2, \ldots, \omega_m$, then the values of the next m consecutive dihedral angles along the chain are $-\omega_1, -\omega_2, \ldots, -\omega_m$. Equations 2 and 3 in section I follow from theorem 2.

We assign serial numbers to each unit of the molecule in such a way that the (i + 2km)th and [i + (2k + 1)m]th units are F_i and F_i *, respectively, where i = 1, 2, ..., m, and k = 0, 1, ..., n - 1. In this section, the (2mn)th local coordinate system will sometimes also be called the 0th one because of the cyclic nature of the molecule. The 0th and first units are taken as F_m * and F_1 , respectively. The relation between \mathbf{r}_0 and \mathbf{r}_1 is given by an equation of the type of eq 4, and that between r_0^* and r_0 is given by eq 43. From eq 4 and 43 and the relation $I' = (I')^{-1}$, we have

$$\mathbf{r_0}^* = \mathbf{I}'\mathbf{T_0}\mathbf{R_1}\mathbf{r_1} + \mathbf{I}'\mathbf{p_0} \tag{47}$$

From eq 47, and from repetitive use of eq 4, we obtain

$$\mathbf{r}_0^* = \mathbf{I}'\mathbf{U}\mathbf{r}_m + \mathbf{I}'\mathbf{p} \tag{48}$$

which is an analog of eq 6. In eq 48, U and p are given by eq 7 and 8, respectively. The matrix I'U brings the righthanded mth coordinate system into the same orientation as that of the left-handed 0th one (U being used for the rotation, and I' for the reflection through a plane). The vector $\mathbf{I}'\mathbf{p}$ is the position vector of the origin of the mth coordinate system with respect to the left-handed 0th one.

When the molecule has I or S_{2n} symmetry, the 0th and mth local coordinate systems are symmetry related. For I symmetry, the 0th coordinate system can be made to overlap the mth one by an inversion through an inversion center; for S_{2n} $(n \ge 2)$ symmetry, this overlap is achieved by a rotation of $\pi \pm \pi/n$ around the symmetry axis, followed by an inversion through an inversion center located on the symmetry axis. To find the conditions that U and p must satisfy in order that they generate conformations with these symmetries, we again consider, as we did in section II, two more coordinate systems (the 0'th and m'th) having the same orientation as the 0th and mth ones, respectively, and having both their origins at the inversion center. Then eq 9 and 10 again hold. However, instead of eq 11, we have

$$\mathbf{r}_{0'} = -\mathbf{U}[\mathbf{u}, \ \pi \ \pm (\pi/n)]\mathbf{r}_{m'} \tag{49}$$

the negative sign appearing because of the inversion. From eq 9, 10, and 49, we obtain an equation corresponding to eq 13. By comparing it with eq 48, we obtain

$$\mathbf{I}'\mathbf{U} = -\mathbf{U}[\mathbf{u}, \pi \pm (\pi/n)] \tag{50}$$

$$I'p = -\{U[u, \pi \pm (\pi/n)] + I\}_q$$
 (51)

Whereas the matrix $\{U[u, \pm (2\pi/n)] - I\}$ of eq 15 is singular (as implied by eq 17), the matrix $\{U[u, \pi \pm (\pi/n)] +$ I) is not. Therefore, eq 49 can always be solved for q for any given vector p. Hence, eq 51 does not constitute a constraint to be imposed on the dihedral angles $\omega_1, \omega_2, \ldots$, ω_m , and is not used to determine the dependent dihedral angles. Also, there are no conditions for the vector u in eq 50. For n = 1, eq 50 reduces to

$$\mathbf{U} = -\mathbf{I}' \tag{52}$$

and, for $n \ge 2$, it follows from eq 50 that

$$Tr(I'U) = 2 \cos(\pi/n) - 1 \tag{53}$$

When eq 52 and 53 are satisfied, the molecule has I or S_{2n}

symmetry, respectively, and the solutions of these equations yield the dihedral angles.

Consider first the case of I symmetry (n = 1). Since we need three parameters to specify a 3 × 3 orthogonal matrix, eq 52 reduces the number of independent variables from m to m-3. We take $\omega_1, \ldots, \omega_{m-3}$ as the independent variables , and $\omega_{m-2},\;\omega_{m-1},\;$ and ω_{m} as the dependent variables (i.e., as unknowns to be determined for a given set of $\omega_1, \ldots, \omega_{m-3}$). In order to emphasize that $\omega_{m-2}, \omega_{m-1}$, and ω_m are unknowns, we shall designate them as ξ , η , and ζ , respectively, and use X, Y, and Z for the matrices \mathbf{R}_{m-2} , \mathbf{R}_{m-1} , and \mathbf{R}_m . Also we shall express U of eq 7 as

$$U = AXBYCZ (54)$$

where

$$\mathbf{A} = \mathbf{T}_{0} \mathbf{R}_{1} \mathbf{T}_{1} \mathbf{R}_{2} \cdots \mathbf{T}_{m-4} \mathbf{R}_{m-3} \mathbf{T}_{m-3}$$
 (55)

$$\mathbf{B} = \mathbf{T}_{m-2} \tag{56}$$

$$C = T_{m-1} \tag{57}$$

It should be noted that A, B, and C of eq 54-57 differ from those of eq 20, 21, and 36. Then, eq 52 can be written as

$$XBYCZ = -A^{-1}I'$$
 (58)

Equating the 1,1 elements of both sides of this equation, we have

$$\alpha \cos \eta + \beta \sin \eta + \gamma = 0 \tag{59}$$

with

$$\alpha = b_{12}c_{21} + b_{13}c_{31}$$

$$\beta = b_{13}c_{21} - b_{12}c_{31}$$

$$\gamma = a_{11} + b_{11}c_{11}$$
(60)

where a_{ij} , b_{ij} , and c_{ij} are the i,j elements of matrices A, B, and C, respectively. The necessary and sufficient condition for the existence of solution(s) of eq 59 is given by

$$\alpha^2 + \beta^2 - \gamma^2 > 0 \tag{61}$$

When this is satisfied, eq 59 has the solution

$$\cos \eta = \frac{-\alpha \gamma \pm \beta (\alpha^2 + \beta^2 - \gamma^2)^{1/2}}{\alpha^2 + \beta^2}$$

$$\sin \eta = \frac{-\beta \gamma \mp \alpha (\alpha^2 + \beta^2 - \gamma^2)^{1/2}}{\alpha^2 + \beta^2}$$
(62)

The \pm and \mp signs are to be understood in the same way as in eq 31. Once η is determined, ξ and ζ can be computed by using the 2,1 and 3,1 elements, and the 1,2 and 1,3 elements of both sides of eq 58, respectively. The result is

$$\cos \xi = \frac{-a_{12}d_{21} - a_{13}d_{31}}{d_{21}^2 + d_{31}^2}$$

$$\sin \xi = \frac{a_{12}d_{31} - a_{13}d_{21}}{d_{21}^2 + d_{31}^2}$$
(63)

$$\cos \zeta = \frac{-a_{21}d_{12} + a_{31}d_{13}}{d_{12}^2 + d_{13}^2}$$

$$\sin \zeta = \frac{-a_{21}d_{13} - a_{31}d_{12}}{d_{12}^2 + d_{13}^2}$$
(64)

where d_{ij} is the i,j element of a matrix defined by

$$D = BYC \tag{65}$$

Thus, ω_{m-2} , ω_{m-1} , and ω_m are determinable for the case of

In the cases of S_{2n} symmetry $(n \ge 2)$, we have only one equation (viz., eq 53), and the number of independent variables is therefore reduced from m to m-1. We take ω_m as an unknown to be determined for a given set of independent variables $\omega_1, \omega_2, \ldots, \omega_{m-1}$. The notations ζ and **Z** will be used in place of ω_m and \mathbf{R}_m , as before. Also, we shall express U of eq 7 as follows.

$$U = EZ \tag{66}$$

where

$$\mathbf{E} = \mathbf{T}_0 \mathbf{R}_1 \mathbf{T}_1 \mathbf{R}_2 \cdots \mathbf{T}_{m-2} \mathbf{R}_{m-1} \mathbf{T}_{m-1}$$
 (67)

Then, eq 53 takes the following form.

$$\alpha' \cos \zeta + \beta' \sin \zeta + \gamma' = 0 \tag{68}$$

with

$$\alpha' = e_{22} - e_{33}$$

$$\beta' = e_{23} + e_{32} \tag{69}$$

$$\gamma' = e_{11} + 1 - 2 \cos(\pi/n)$$

This equation has solution(s), when

$$\alpha'^{2} + \beta'^{2} - \gamma'^{2} > 0 \tag{70}$$

When this is satisfied, eq 68 has the solution

$$\cos \zeta = \frac{-\alpha'\gamma' \pm \beta'(\alpha'^2 + \beta'^2 - \gamma'^2)^{1/2}}{\alpha'^2 + \beta'^2}$$

$$\sin \zeta = \frac{-\beta'\gamma' \mp \alpha'(\alpha'^2 + \beta'^2 - \gamma'^2)^{1/2}}{\alpha'^2 + \beta'^2}$$
(71)

The ± and ∓ signs are to be understood in the same way as in eq 31. Thus, ω_m is determinable for molecules with S_{2n} symmetry.

IV. Geometry of Cyclohexane

Primarily for the purpose of illustrating the methods developed in sections II and III, we apply them here to the generation of conformations of cyclohexane. Since the conformations of cyclohexane have been the subject of thorough theoretical studies, 11-13 most of the results obtained here are not new, except that an explicit expression is given for the dihedral angles in the flexible boat form of cyclohexane. While the emphasis here is on the illustration of the foregoing theory, nevertheless, a new view is provided as to the origin of the rigidity and flexibility of the chair and boat forms, respectively, of cyclohexane. This insight is essential for resolving the paradox mentioned at the end of section II.

The cyclohexane molecule consists of six identical units $F = CH_2$, with each unit having a plane of symmetry, i.e., $F^* = F$. Therefore, the molecule may have C_1 (no symmetry), C2, C3, C6, I, and S6 symmetry. Since only the positions of the backbone atoms are essential for generating ring structures, we shall consider only the positions of the

- (11) H. Sachse, Z. Physik. Chem., 10, 203 (1892).
 (12) P. Hazebrook and L. J. Oosterhoff, Discuss. Faraday Soc., 10, 87
- (13) J. D. Dunitz, J. Chem. Educ., 47, 488 (1970).

Table I Cartesian Coordinates of Carbon Atoms of Cyclohexane in the ith Local Coordinate Systema

Car- bon At- oms	Cartesian Coordinates		
	x	y	z
i-1	0	0	0
i	1	0	0
i + 1	$1 + \cos \theta^b$	$\sin heta$	0

 a The bond length between carbon atoms is taken as unity. angle θ is the supplement of the C-C-C bond angle, which is close to the tetrahedral angle 109.47°. Therefore, $\cos \theta \simeq \frac{1}{3}$.

carbon atoms. The cartesian coordinates of carbon atoms (i-1), i, and (i+1) in the ith local coordinate system are given in Table I, from which it follows that eq 4 takes the following form.

$$\mathbf{r}_{i-1} = \mathbf{T} \mathbf{R}_i \mathbf{r}_i + \mathbf{p} \tag{72}$$

where

$$\mathbf{T} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 (73)

 \mathbf{R}_i is given by eq 5, and

$$\mathbf{p} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \tag{74}$$

We shall consider first the case of S_6 symmetry. For this symmetry (n = 3, m = 1), the relation between the backbone dihedral angles is $\omega_1 = -\omega_2 = \omega_3 = -\omega_4 = \omega_5 =$ $-\omega_6$, according to eq 3. The matrices **E** and **Z** in eq 66 are T of eq 73 and R of eq 5, respectively. Hence, the quantities of eq 69 are given by

$$\alpha' = \cos \theta - 1$$

$$\beta' = 0 \qquad (75)$$

$$\gamma' = \cos \theta$$

According to eq 70, eq 68 has solution(s) for the coefficients given by eq 75 when $\cos \theta \le \frac{1}{2}$, which is satisfied because $\cos \theta \simeq \frac{1}{3}$ (see Table I). From eq 71 we have

$$\cos \omega_1 = \cos \theta / (1 - \cos \theta)$$

$$\sin \omega_1 = \mp (1 - 2 \cos \theta)^{1/2} / (1 - \cos \theta)$$
(76)

If $\cos \theta = \frac{1}{3}$, then $\cos \omega_1 = \frac{1}{2}$, $\sin \omega_1 = \mp (3)^{1/2}/2$, and ω_1 = $\mp \pi/3$. These solutions of eq 76 correspond to the socalled chair form of cyclohexane. This conformation is rigid, because ω_1 is allowed only at isolated values (i.e., is not allowed to vary continuously).

Now let us consider the case of I symmetry, for which there are three variable dihedral angles in a symmetry unit. If the values of three consecutive angles are ω_1 , ω_2 , and ω_3 , those of the next three angles are $-\omega_1$, $-\omega_2$, and $-\omega_3$, according to eq 2. The matrices in eq 54 are as follows in this case: A = B = C = T, $X = R(\omega_1)$, $Y = R(\omega_2)$, and $\mathbf{Z} = \mathbf{R}(\omega_3)$. Then the quantities of eq 60 are given by

$$\alpha = -\sin^2 \theta$$

$$\beta = 0$$

$$\gamma = \cos \theta (1 + \cos \theta)$$
(77)

Equation 59 has solution(s) for the coefficients given by eq 77, when $\cos \theta \leq \frac{1}{2}$ (according to eq 61). This is again satisfied because $\cos \theta \simeq \frac{1}{3}$. From eq 62 we have

$$\cos \omega_2 = \cos \theta / (1 - \cos \theta)$$

$$\sin \omega_2 = \mp (1 - 2 \cos \theta)^{1/2} / (1 - \cos \theta)$$
 (78)

The values of ω_1 and ω_3 are determined from eq 63 and 64 to be $\omega_1 = \omega_3 = -\omega_2$. Thus, this conformation with I symmetry is again the same rigid chair form.

The case of C_6 symmetry will be considered next. In this case the matrix U of eq 7 is given by $TR(\omega_1)$. When this is introduced into eq 16, we obtain

$$\cos \omega_1 = (2 - \cos \theta)/(1 + \cos \theta) \tag{79}$$

However, no angle ω satisfies eq 79, because $\cos \omega \simeq \frac{5}{4}$ for $\cos \theta \simeq \frac{1}{3}$. This proves the nonexistence of a conformation of cyclohexane with C_6 symmetry.

The case of C_3 symmetry will be considered next. The dihedral angles along the chain obey the following relationship according to eq 1: $\omega_1 = \omega_3 = \omega_5$, $\omega_2 = \omega_4 = \omega_6$. The values of ω_1 and ω_2 are determined as follows. The matrix U of eq 7 is given by AXBY, where A = B = Tand $X = \mathbf{R}(\omega_1)$, $Y = \mathbf{R}(\omega_2)$. According to eq 5 and 72, the vector **p** of eq 8 is given by

$$\mathbf{p} = \begin{bmatrix} 1 + \cos \theta \\ \sin \theta \\ 0 \end{bmatrix} \tag{80}$$

Then the quantities of eq 39 and 40 are given by

$$\beta' = -2 \cos \theta \sin \omega_{1}$$

$$\gamma' = \cos^{2} \theta - \sin^{2} \theta \cos \omega_{1}$$

$$\alpha'' = -2 \cos \theta (1 + \cos \theta) \sin \omega_{1} - \sin^{2} \theta \sin \omega_{1}$$

$$\beta'' = (1 + \cos \theta) |\sin^{2} \theta - (1 + \cos^{2} \theta) \cos \omega_{1}| - \sin^{2} \theta \cos \theta (1 + \cos \omega_{1})$$

$$\gamma'' = \sin^{2} \theta \sin \omega_{1}$$
(82)

 $\alpha' = -\sin^2\theta + (1 + \cos^2\theta)\cos\omega_1$

If the left-hand side of eq 42 is written as $f(\omega_1)$, the graph of $f(\omega_1)$ is given in Figure 2 for $\cos \theta = \frac{1}{3}$ and $\sin \theta =$ $2(2)^{1/2}/3$. The graphical solutions of eq 42 are $\omega_1 = \pm \pi/3$. By substituting this value into eq 39, 40, and 41, we obtain $\omega_2 = \mp \pi/3$. Again we have the rigid chair form. In summary, by looking for conformations of cyclohexane with S_6 , I, or C_3 symmetry, we obtained one rigid conformation which is usually called the chair form. In fact, the symmetry of the chair form is D_{3d} , and the point groups S_6 , I, and C_3 are subgroups of the group D_{3d} .

Now let us consider the case of C2 symmetry. According to eq 1, the dihedral angles along the chain have the following relationships: $\omega_1 = \omega_4$, $\omega_2 = \omega_5$, and $\omega_3 = \omega_6$. Hence we will compute ω_1 , ω_2 , and ω_3 . The matrices and vectors in eq 18 and 19 are as follows: $A = TR(\omega_1)T$, B = $\mathbf{T}, \mathbf{X} = \mathbf{R}(\omega_2), \mathbf{Y} = \mathbf{R}(\omega_3),$ and

280 Gō, Scheraga Macromolecules

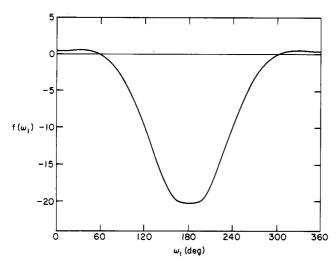


Figure 2. Graph of the left-hand side of eq 42 for the conformation of cyclohexane with C_3 symmetry.

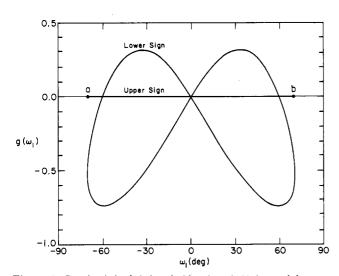


Figure 3. Graph of the left-hand side of eq A-20 for cyclohexane. The upper and lower signs refer to those in eq 94. The value of $g(\omega_1)$ at $\omega_1=0^\circ$ and the line segment between points a and b correspond to the flexible boat forms. The two points at $\omega_1=\pm60^\circ$ correspond to the rigid chair form.

$$\mathbf{a} = \begin{bmatrix} 1 + \cos \theta \\ \sin \theta \\ 0 \end{bmatrix}$$

$$\mathbf{b} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
(83)

At this point we define several new quantities.

$$x = -\cos \theta (1 + \cos \theta) + \sin^2 \theta \cos \omega_1$$

$$y = \sin \theta (1 + \cos \theta) + \cos \theta \sin \theta \cos \omega_1 \quad (84)$$

$$z = -\sin \theta \sin \omega_1$$

$$w = \{(1 + \cos \theta)(1 + \cos \theta + \cos^2 \theta) - \sin^2 \theta (1 + \cos \theta) \cos \omega_1\}/\sin \theta$$
 (85)

$$q_z = +(y^2 + z^2 - w^2)^{1/2}$$
 (86)

The quantity q_z of eq 86 is real, when the following

inequality is satisfied.

$$\frac{1+2\cos\theta}{2(1-\cos\theta)} + \frac{\sqrt{3}}{2}\frac{1}{\sin\theta} \ge \cos\omega_1 \ge \frac{1+2\cos\theta}{2(1-\cos\theta)} - \frac{\sqrt{3}}{2}\frac{1}{\sin\theta}$$
(87)

The first inequality is always satisfied because $\cos\theta \simeq \frac{1}{3}$. Using the quantities defined above, the vectors in eq 26 and 27 are given by

$$\mathbf{c} = \begin{bmatrix} -x \\ -y \\ -z \end{bmatrix}$$

$$\mathbf{d} = \begin{bmatrix} \cos \theta \\ -\sin \theta \\ 0 \end{bmatrix}$$
(88)

and the quantities in eq 29 are given by

$$\alpha = -y \sin \theta$$

$$\beta = -z \sin \theta$$

$$\gamma = w \sin \theta$$
(89)

Then ω_2 is given by the following equations, when ω_1 satisfies eq 87.

$$\cos \omega_2 = \frac{yw + zq_z}{y^2 + z^2}$$

$$\sin \omega_2 = \frac{zw - yq_z}{y^2 + z^2}$$
(90)

The vectors in eq 33 are given by

$$\mathbf{e} = \begin{bmatrix} 1 - x \\ y \\ -z \end{bmatrix}$$

$$\mathbf{f} = \begin{bmatrix} 1 - x \\ w \\ q_z \end{bmatrix}$$
(91)

Then ω_3 is given by

$$\cos \omega_3 = \frac{yw - zq_z}{y^2 + z^2}$$

$$\sin \omega_3 = \frac{zw + yq_z}{y^2 + z^2}$$
(92)

when ω_1 satisfies eq 87. In contrast to the situation found in the cases of conformations with S_6 , I, or C_3 symmetry, the conformations with C_2 symmetry have one degree of freedom; *i.e.*, ω_1 is a variable in the range satisfying eq 87. The conformation with C_2 symmetry obtained above is the well-known so-called flexible boat form. Equations 90 and 92 with eq 84, 85, and 86 provide an explicit expression for the dihedral angles in the flexible boat form of cyclohexane.

The rigidity of the chair form, and the flexibility of the boat form are a straightforward result of the theory developed in sections II and III. However, the origin of the rigidity and the flexibility can best be understood by looking for all possible conformations of cyclohexane without assuming any a priori symmetry. This can be done by using the method developed in paper A.³ Because the theory developed there is quite general, any conformations of cyclohexane with or without any symmetry should be

ı

obtained therefrom. However, it is interesting to see how the continuous solution of the so-called flexible boat form of cyclohexane is obtained, because the theory developed previously in A,3 at first sight, predicts only rigid conformations for cyclohexane (the paradox stated at the end of section II).

If no symmetry is assumed then the quantities in eq A-16, A-17, and A-18 are defined as follows: all T_i 's are T of eq 73, all \mathbf{R}_i 's are $\mathbf{R}(\omega_i)$ of eq 5, and all \mathbf{q}_i 's are \mathbf{p} of eq 80. The vector s in eq A-16 is the zero vector, and $\mathbf{u} = \mathbf{e}_1$ and $v = e_2$ in eq A-17 and A-18, respectively, where e_1 and e2 are column vectors, whose transposed (row) vectors are $e_1^* = (1,0,0)$ and $e_2^* = (0,1,0)$, respectively. The cartesian coordinates of the vector \mathbf{r} of eq A-21 are x, y, and zof eq 84. Equation A-26 has solution(s), when eq A-27 and A-28 are satisfied. Equation A-27 is always satisfied in this case. Equation A-28 is the same as eq 87. When eq 87 is satisfied, ω_2 is given by eq 90 (from eq A-29). When x and w of eq 84 and 85 are substituted into eq A-33, we have

$$\cos \omega_4 = \cos \omega_1 \tag{93}$$

Equation A-35 is then

$$\sin \omega_4 = \pm \sin \omega_1 \tag{94}$$

When eq 93 and 94 are substituted into eq A-36, we ob-

$$\cos \omega_3 = \frac{yw \mp zq_z}{y^2 + z^2}$$

$$\sin \omega_3 = \frac{\pm zw + yq_z}{v^2 + z^2}$$
(95)

The three \pm (and \mp) signs in eq 94 and 95 are interdependent in a sense that, if the upper (respectively, lower) sign is taken in one equation, the upper (respectively, lower) sign must be taken in the other two equations. But they are independent of the ± sign in eq 86. When the upper sign is taken in eq 94 and 95, eq 95 becomes identical with eq 92. When ω_2 , ω_3 , and ω_4 given by eq 90, 95, 93, and 94 are substituted into the left-hand side of eq A-20 [which we will write as $g(\omega_1)$], the graph of this quantity (for cos $\theta = \frac{1}{3}$ and $\sin \theta = 2(2)^{1/2}/3$) shown in Figure 3 is obtained. When the upper sign is taken in eq 94 and 95 (or equivalently when $\omega_1 = \omega_4$), $g(\omega_1)$ always vanishes, i.e., all ω_1 's which satisfy the inequality of eq 87 are a solution of eq A-20. This continuous range of solutions is given by the horizontal line segment which exists only between points a and b. This solution is identical with the flexible boat form of C_2 symmetry. When the lower sign is taken in eq 94 and 95 (or equivalently when $\omega_1 = -\omega_4$), there are three solutions, $\omega_1 = 0^{\circ}$, $\pm 60^{\circ}$. When $\omega_1 = 0^{\circ}$, ω_4 also vanishes, and there is no other solution than the one already obtained for the case of $\omega_1 = \omega_4$. When $\omega_1 = \pm 60^\circ$, it is found from eq 90 (for ω_2), 95 (for ω_3), 93 and 94 (for ω_4), A-17 (for ω_5), and A-18 (for ω_6) that $-\omega_2 = \omega_3 = -\omega_4$

= ω_5 = $-\omega_6$ = $\pm 60^\circ$. This is the chair form with D_{3d} symmetry.

By looking for all possible conformations of cyclohexane without assuming any a priori symmetry, we have found no other conformation than those already found by assuming one of the possible symmetries. It is interesting that, when the upper sign is taken in eq 94, eq A-20 (which is usually an algebraic equation for ω_1) becomes an identity. This is what appeared to be a paradox in section II. In the case of conformations with C_2 symmetry, the conclusion of paper A about the number of independent variables (i.e., that there is no degree of freedom in cyclohexane) must be modified, because eq A-20 is satisfied for a continuous range of ω_1 satisfying eq 87, or equivalently eq A-20 is an identity for this range.

IV. Summary and Discussion

Mathematical methods have been developed to find a set of dihedral angles in a conformation of a cyclic chain molecule having C_n , I, or S_{2n} symmetry, which are characterized by eq 1-3, respectively. The condition of ring closure decreases the number of independent variables from m (i.e., the number of variable dihedral angles in a symmetry unit) to m-2, m-3, and m-1 in the case of C_n , I, and S_{2n} symmetry, respectively. Methods for solving the appropriate algebraic equations for 2, 3, and 1 dependent angle(s) in terms of m-2, m-3, and m-1independent angles (in the case of C_n , I, and S_{2n} symmetry, respectively) have been presented.

This conclusion appears to contradict the one found earlier in paper A,3 in which the problem of ring closure was treated without assuming any a priori symmetry. The earlier³ conclusion was that, where there are m angles in the cyclic chain, the number of independent variables is m-6. At first glance, this conclusion implies that there are no independent variables in cyclohexane, meaning that any existing conformation of cyclohexane, should be rigid. However, the result obtained in this paper says that there is one degree of freedom in the conformation of cyclohexane with C_2 symmetry. This apparent paradox is resolved by observing that an algebraic equation which occurred in paper A3 turns out to be an identity for conformations with C_2 symmetry.

The methods developed here have been applied in a theoretical conformational energy study¹⁴ of cyclo(hexaglycyl). This molecule may conceivably have conformations with C_6 , S_6 , I, C_3 , or C_2 symmetry. However, in fact, conformations with all of these symmetries except C_6 are found¹⁴ to be possible. The method developed here is also being applied¹⁵ to a theoretical study of the conformations of gramicidin S, which is known to have C₂ symmetry.8

Acknowledgment. The assistance of Mrs. Susan Rosen in the computations is gratefully acknowledged.

⁽¹⁴⁾ N. Go and H. A. Scheraga, Macromolecules, submitted for publication.

⁽¹⁵⁾ M. Dygert, N. Gō, and H. A. Scheraga, in preparation.